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High-resolution measurements have been performed of the convective heat current 
as a function of time when a Rayleigh-BBnard cell is swept through its threshold with 
a specified time-dependent heat input. The results are interpreted in terms of the 
amplitude equation which exactly describes the slow variations in space and time of 
hydrodynamic quantities near the threshold. A phenomenological forcing field is added 
to this equation, and its form and magnitude are fitted to the onset time of the con- 
vective heat current. A deterministic model in which the field is an adjustable constant 
yields a good fit to the data for both a step and a linear ramp in the heat input. An 
alternative stochastic model, in which the field is a Gaussian variable with zero mean 
and a white-noise spectrum, is adequate for the ramp experiments, but cannot fit the 
step data for any value of the mean-square field. The systematics of the field and onset 
time versus ramp rate are studied in both the deterministic and stochastic models, and 
attempts are made to interpret the field in terms of physical mechanisms. When the 
data for long times are analysed in terms of the amplitude equation, it is found that 
the state first excited a t  onset is not the roll pattern which is stable in steady state. 
Instead, the system goes first to an intermediate state, which we tentatively identify 
as a hexagonal configuration. The decay of this state is governed by a further adjustable 
field in the amplitude equation. 

1. Introduction 
The states of flow occurring near the onset of Rayleigh-BBnard convection can be 

described by an amplitude equation (Segel 1969; Newel1 & Whitehead 1969), which 
represents a considerable simplification of the full hydrodynamic equations (Schluter, 
Lortz & Busse 1965; Busse 1978). Efforts to verify the predictions of the amplitude 
equation in a quant,itative way have been primarily restricted to steady flows, although 
some information has also been obtained on the time scale of changes in the flow pattern 
(Wesfreid et al. 1978; Behringer & Ahlers 1977, 1982; Normand, Pomeau & Velarde 
1977). A problem which has attracted some interest in the past is the dynamic onset of 
convection when a system is swept through the convective threshold by heating the 
bottom plate (Spangenberg & Rowland 1961; Foster 1965a,b, 1969; Davis 1971). It 
is natural to assume that, if the system remains near the threshold, its response should 
be describable by t,he amplitude equation, which is sufficiently simple to yield rather 
detailed quantitative predictions. This paper presents a set of such experiments in 
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which the response was determined as a function of time, by accurate measurements 
of the Nusselt number. 

The amplitude equation of Segel, and Newel1 & Whitehead is a partial differential 
equation for an order parameter @, whose stationary value is zero in the conducting 
regime below the threshold (Rayleigh number R less than R,). This conducting solution 
becomes unstable when R > R,, but i t  remains a solution of the homogeneous amplitude 
equation. I n  order to describe the dynamic process by which a non-zero y9 develops in 
the system, i t  is thus necessary to assume a finite value for 1/. even below the threshold 
(Foster 1 9 6 5 ~ ;  Gollub & Freilich 1976). A convenient way to do this is to add to the 
amplitude equation an inhomogeneous term, whose form and magnitude will control 
the time scale for the onset of convection. The physical origin of such a term is rather 
difficult to elucidate in detail, though a number of possible mechanisms suggest them- 
selves rather naturally, such as imperfections in the cell geometry (Kelly & Pal 1976), 
lateral heat flow (Daniels 1977; Hall & Walton 19771, and intrinsic fluctuation effects 
(Zaitsev & Shliomis 1970; Graham 1974; Swift & Hohenberg 1977). The last class of 
phenomena have been discussed theoretically in the recent literature, but have so far 
not been observed experimentally. We show below that the extremely small thermal 
fluctuations present in all fluids would lead to observable effects in the present dynamic 
experiments, if other effects leading to inhomogeneous terms could be suppressed. 
This is, however, not the case, so we have failed to detect thermal fluctuations of the 
theoretically predicted magnitude. A similar conclusion was reached by Sano & 
Sawada ( 1  978). 

Earlier experimental investigations of the dynamic onset of convection have been 
at best semi-quantitative, and have primarily focused on a determination of the onset 
time where convective patterns first appear (Spangenberg & Rowland 1961 ; Foster 
196.53). Since the rate of heating in these experiments was high, the system reached a 
quasi-steady state of convection very far above the threshold, for which no simple 
description exists even in steady state. The theories which have been applied to this 
problem have therefore been restricted to linear stability analyses of the time- 
dependent situation, in order to determine the onset time (Morton 1957; Lick 1965; 
Foster 1 9 6 5 ~ ;  Robinson 1967; Homsy 1973; Wankat & Homsy 1977). The comparison 
between the theories and the above-mentioned experiments have been rather quali- 
tative, and have only concerned the initial appearance of convection. 

This work presents high-accuracy measurements of the full evolution of the heat 
current from the conducting state (Nusselt number N = I), to the convecting state 
( N  > 1). By limiting the heating to  low amplitudes we are able to remain in the region 
of weak convection ( N  - 1 < l), where the amplitude equation is valid. This permits 
a fully nonlinear analysis which includes both the onset time and the later stages of 
growth and saturation of the convective heat current. The calculations based on the 
amplitude equation can then be tested quantitatively. 

I n  view of the uncertainties concerning the precise mechanism which triggers con- 
vection, we have used a phenomenological approach, in which an inhomogeneous 
forcing field is added to the amplitude equation, and the magnitude and form of this 
field are fitted to the data. The homogeneous part of the equation has no free para- 
meters, however, since we have taken into account the finite lateral extent of the 
system, using the boundary conditions discussed by Daniels (1977) and Brown & 
Stewartson (1977). By studying the systematics of the forcing field, for a set of 
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experiments where the heat was applied either in a sudden step, or in a linear ramp 
with varying ramp rate, we are able to  draw some conclusions on the mechanism which 
triggers convection, and also to test the validity of the amplitude equation. The main 
results of the present work are as follows. 

(i) The overall predictions of the amplitude equation concerning the dependence 
of Nusselt number on cell geometry and Rayleigh number in steady state, as well as the 
basic time scale for changes in Nusselt number near the threshold, are quantitatively 
confirmed. Similar results have been obtained for the Taylor problem near onset by 
Gollub & Freilich (1976). 

(ii) The convection pattern which is excited initially is not the one which eventually 
becomes stable in steady state. The system goes initially to  an intermediate 
state which we analyse in terms of a hexagon structure, in contrast to the roll 
structure which occurs in steady state. A hexagon pattern has been predicted and 
observed in a somewhat similar situation in which both the upper and lower plates 
have time-varying temperatures, albeit a t  much higher ramp rates (Krishnamurti 
1968a, b ) .  

(iii) A deterministic model with a constant forcing field yields a good fit to the shape 
of the Nusselt number vs. time curve a t  onset. An extension of the model with two fields 
describes the further decay of the intermediate (hexagon) pattern t o  the stable (roll) 
configuration, for both steps and ramps in the heat input. The dependence of the field 
on ramp rate is roughly linear, with aJinite intercept a t  zero ramp rate. This residual 
field which is not related to the time dependence of the heat input can be used to  
estimate the rounding of the N vs. R curve in steady state, in reasonable agreement 
with the independent experiments of Behringer & Ahlers (1982). 

(iv) A stochastic forcing field with Gaussian white noise statistics was also used in 
the amplitude equation, in an attempt to model fluctuation effects. Approximate 
solutions of the ensuing nonlinear stochastic equation yielded a significantly worse fit 
to the N vs. t curves for the step experiments than the deterministic model. For the 
ramp experiments the stochastic and determinishic models fitted equally well. The 
magnitude of the noise necessary to obtain the correct onset time for either the step or 
the ramp, was larger than the thermal noise by a factor of 6 x lo3. The noise amplitude 
fitted from dynamic experiments also yielded a rounding of the N vs. R curve which 
agreed with static experiments. 

It must be stated, finally, that our conclusions concerning the spatial form of the 
convection pattern in the metastable and stable states must remain tentative, since 
the experiments only measure the overall Nusselt number, and give no direct infor- 
mation on the spatial configuration. It is entirely possible that more complicated 
patterns than the ones we considered are present in the cell, and lead to nearly the same 
Nusselt numbers. On the other hand the theory itself contains detailed information on 
spatial structure and it would be interesting to bring it to bear on accurate dynamic 
experiments using local probes (Berg6 & Dubois 1974; Wesfreid et al. 1978; Gollub 
& Benson 1980; Libchaber & Maurer 1978). 

The paper is divided into four sections. In  $ 2  the presently known information 
concerning the amplitude equation is summarized, including the effect of boundary 
conditions at  the horizontal and lateral walls, and the influence of cell geometry 
($52.1,  2 . 2 ) .  A discussion is presented of the conditions under which the partial 
differential equation satisfied by $(r,t) can be replaced by an ordinary differential 
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equation for the amplitude A ( t )  of a single mode ($  2.3).  The different forms used for 
the phenomenological forcing field are briefly discussed (9  2.4). Section 3 describes the 
dynamic experiments and $ 4  contains an analysis of the results. The model with a 
single roll pattern growing initially and saturating a t  long times is shown to disagree 
with the data ( $  4.2), and is replaced by one with a hexagon pattern followed by a stable 
roll pattern; this model fits the experiments with two adjustable field parameters 
( 3  4 .3) .  The full partial differential equation is solved numerically for the growth of a 
roll pattern initially excited a t  the outer edge of the cell, and propagating into the 
interior ( 3  4.4). The stochastic model is then considered and shown to disagree with the 
step data, but to agree rather well with the ramp experiments ( $  4.5). The systematics 
of the field values and onset times as a function of ramp rate and initial equilibration 
level are studied and compared with theoretical estimates ( $  4.6). Many of the detailed 
calculations are contained in appendixes A-D. 

Preliminary accounts of parts of this work have been given by Ahlers (1978) and 
Ahlers & Hohenberg (1978). 

2. The amplitude equation 
In this section we shall summarize the available information on the amplitude 

equation, in a rather general context. The specific application to the time-dependent 
heating experiments will be discussed in $ 4. 

2. I. Laterally injinite system 

For a system with free horizontal boundaries the amplitude equation was first derived 
from the hydrodynamic equations by Newell &Whitehead (1969) and by Segel(l969) 
(see also Joseph 1976; Normand et al. 1977). It describes the slow variations (in space 
and time) of velocities and temperature near the convective threshold R = R,", in 
terms of an order parameter $(r , t ) ,  which is the projection of the hydrodynamic 
variables onto the slowest unstable mode of the system. 

The equation involves only the two-dimensional horizontal direction r, and it may 
conveniently be written in the form (Graham 1974; Swift & Hohenberg 1977) 

F = jd2r { - $qk2 + 4gP4 + &[(V2 + 402) $I2}, (2.2) 

where t is the time, qo is the critical wavevector, $ is a real function and e is given by 

(2.3) E = (RIB,")- 1. 

The quartic term has been written schematically as gk4 in ( 2 . 2 ) ;  in general it involves 
a non-local coupling between @ values a t  different spatial points (see appendix A). The 
quantities ro, zo, qo and g were evaluated by Newell & Whitehead for a system with free 
horizontal boundaries. For the rigid case, an amplitude equation of precisely the same 
form may be derived (Cross 1980), with different values for the parameters 70, R,", qo, Eo 
and g (Schliiter et al. 1965; Wesfreid et al. 1978; Behringer & Ahlers 1977) (see table 1). 
The normalization of @ is chosen so that 

(2.4) S-lJd2r I,P = ( N  - 1) R/Rc = Jv; 



The amplitude equation near the convective threshold 30 1 

, > 

Value for 
u = 0.78 

Rigid boundary conditions 

Free boundary conditions 

27n4 

1 9 . 6 5 ~  
g+ 0.51 17 

11.87 

0-148 - E: 

P 

9 0 * 0 0 8 3 ~ - ~  - 0 .0047~- '  + 0.6995 0.707 

0.767 
0 * 0 8 9 3 ~ - ~  + 0*08140--' + 0.2913 
0.0083+ - 0 .0047~- '+  0.6995 

TABLE 1 

4 

nlJ2 

8/3n2 

0.5 

0.5676 + 0 . 1 3 7 ~ - ~ +  0.2126g-2 

where N is the Nusselt number, and S is the area of the layer. The symbol Nwill be 
used throughout to denote the dimensionless convective heat current. The hydro- 
dynamic variables (velocities and temperature) are expressible in terms of $, as 
spelled out in appendix A. 

As it is written in (2 .2) ,  the amplitude equation contains terms with fourth powers 
of the gradient, which are in general outside the domain of validity of the lowest-order 
gradient expansion. Nevertheless, under certain circumstances such quartic terms can 
contribute in the same order as gradient squared terms, and it is convenient to retain 
the general form (2.2). Equivalently, we may write 

1 3!! = -[€-&V2+q;)2-gp-j11, 
at To 

Corrections to ( 2 . 5 )  are of relative order et  (Joseph 1976; Cross et al. 1980). 
We shall now apply (2.5) to study various different geometrical configurations, and 

make explicit contact with the work of Newell & Whitehead (1969).  
(i) An infinite system of rolls parallel to the x direction: We write 

$(r, t )  = 4 2  Re [A(r, t )  e i p o r ] ,  (2.6) 

where A(r,  t )  is a complex function. Equation (2.5) then becomes 

with 

An analysis of the stability properties of steady solutions of (2.7) was carried out by 
Newell & Whitehead, who found the various stability boundaries appropriate to  the 
limit R -+ Rp, in agreement with results of Schluter et a1 (1965) and Busse (1967a).  

(ii) An infinite system of N sets of rolls with orientations Bi (i = 1, ..., N ) :  Let us set 

with 

(2.9) 

(2.10) 
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(2.11) 

where x j  is along qj. The coefficients gj, depend on the angle B i .  q, and are Prandtl- 
number dependent (Newel1 & Whitehead 1969; Cross 1980), as discussedin appendix A. 

(iii) Concentric rolls in a cylinder. For this case we write (Brown & Stewartson 
1978) 

$(r, t )  = 4 2  Re [ (L/r )& A(r,  8, t )  eiqor], (2.12) 

where r and 8 are polar co-ordinates of r in the plane, and L is an arbitrary length scale 
which will be set equal to the cylinder radius below. The amplitude equation is then 

(2.13) 

2.2. Laterally jinite system: boundary conditions 

The boundary conditions satisfied by $ at lateral walls have only been derived for 
systems with free upper and lower boundaries. Moreover, since the amplitude equation 
allows only slow variations of $, it is clear that the lateral dimension of the container 
must be much larger than the height d .  In  that case, it  has been shown (Brown & 
Stewartson 1977) that for a rectangular container (case (i) above), the boundary con- 
ditions a t  ' ideal ' surfaces (either perfectly insulating or perfectly conducting) are 

A ( x , y ) = O  on x = + L ,  (2.14 a)  

(2.14b) A ( x , y ) = - = O  on y = & M ,  

where 2 L  and 2M are the dimensions of the container perpendicular and parallel to 
the rolls, respectively. In  fact, it may be shown (Cross et al. 1980) that (2.14a), in the 
direction perpendicular to the rolls, holds for rigid side walls of arbitrary thermal 
conductivity, as long as there is no heat loss through the walls in the static conduction 
state. In  the opposite case where a heat current is imposed a t  the side walls,? the 
boundary condition ( 2 . 1 4 ~ )  takes the form (Daniels 1977) 

aA 

aY 

A ( x , y ) = h ,  on x =  &L, (2.15) 

where A ,  depends on the heat current and the length L. The boundary condition ( 2 . 1 4 ~ )  
has been dramatically confirmed in experiments by Wesfreid et at. (1 978). 

For a cylindrical container with cylindrically symmetric solutions, the boundary 
condition at  the outside wall is the same as for a rectangular container, namely ( 2 . 1 4 ~ )  
and (2.15) with x replaced by r .  There is, however, an additional boundary condition at 
the centre of the cylinder, where the situation is somewhat complicated. Brown & 
Stewartson (1978) have shown that for sufficiently large radius L one may use the 
condition 

A(r,O) = 0, r = 0, (2.16) 

t This situation is somewhat misleadingly referred to as 'imperfectly insulating' in the recent 
literature. 
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whereas for finite but large L one has 

A(O,8) = O(l/lnL)*, (2.17) 

so that the large L limit is only reached very slowly. We shall consider amplitude 
functions which vanish a t  the centre, as well as functions which are finite. The boundary 
conditions for non-cylindrically-symmetric solutions have not been discussed, as far 
as we know, in cylindrical geometry. 

2.3. Removal of spatial dependence 

The partial differential equation (2.5) can be reduced to an ordinary differential 
equation in time, under two different sets of conditions. The first is the case of a very 
large system, not too near the threshold, when the spatial dependence of the solution 
may be neglected, namely 

4 + t o ) 2  B 1, (2.18) 

with nevertheless E < 1.  For the rectangular system the appropriate equation is 
obtained from (2.7) by neglecting the spatial dependence of A(r, t ) ,  

dA(t) 1 
dt 70 

-- - - [s-g (A(Z]A(t). (2.19) 

For the cylinder the same equation holds, applicable in the region 1 < r < L, where the 
derivative term in (2.13) is negligible. 

The other limit in which the spatial structure of A may be neglected is near the 
threshold, where only the lowest unstable mode of the linear system is excited. Let us, 
for illustration, consider the cylindrically symmetric case, namely (2.13) with no 
8 dependence 

- aA = - [ e + t t s - $ l ~ / 2 ]  1 a 2  A ( r , t ) ,  
at 70 

and boundary conditions 

We expand the solution in the form 
nn-r 

A(r,t) = Ansin--, 
W 

n=l L 

(2.20) 

(2.21) 

(2.22) 

and derive coupled equations for the A,. As shown in appendix B, a closed equation 
for the largest amplitude A ,  = results, in the range 

.(L/n&J2 z 1. 

-=T[[a-gIB(2]B,  
This equation has the form 

d B  3. 
dt 70 

where 

(2.23) 

(2.24) 

- E - E  R-R, R -R," 
E = C -  -- E ,  z 7P€yL2 = c (2.25)) (2.26) I+€, R, ' R," ' 

The domain of validity of (2.24) is more properly written as 

[a 5 E,, (2.29) 
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FIGURE 1. Convective heat flow JV from the static solution of the amplitude equation for a 
cylinder [equation (2.20), solid line] as a function of reduced Rayleigh number e = (R-  R?)/RF. 
The plot of g x / E ,  us. ( 6  - B , ) / E ,  (where 6, n z ~ ~ / L z )  is independent of the cylinder radius L. The 
upper and right-hand scales (N 'us. Z) depend on L and u and are evaluated for the experimental 
values L = 4.72 (E, = 0-066) and v = 0.78. The dashed line is the single-mode approximation, 
equation (2.24). The inset shows the 'slope' of the solid curve. Note that the slope appropriate 
to the infinite system [ g N / ( e - c , )  = 11 is not reached until e/cc 1 .  

i.e. the ordinary differential equation is only strictly valid in the immediate vicinity 
of the (shifted) threshold. As E increases, the higher modes of (2.22) are coupled in, and 
one must solve a partial differential equation in order to describe the region inter- 
mediate between (2.18) and (2.29). We would in principle expect corrections to (2.24)- 
(2.28) to be of order e:, which is 0.24 for the value L = 4-72 used in our experiments. 
On the other hand, comparison with exact calculations of the growth rate To using the 
linear theory in finite geometry (Shaumeyer, Behringer & Baierlein 1980, and private 
communication) suggest that the accuracy is higher, possibly of order e,. Indeed, for 
L = 4.72 and v = 0.78, these authors find 7t1 = 12-25 for conducting lateral boundaries, 
and ?;I = 12.48 for insulating boundaries, in excellent agreement with the value 
7c1 = 12.58 obtainedfrom (2.28), which does not differentiate between conducting and 
insulating boundaries to lowest order. 

As an example of the existence of the different regimes (2.18) and (2.29),we have 
calculated the static solutions of the partial differential equation (2.20) for cylindrical 
geometry. The ensuing heat flow is plotted in figure 1, as a function of e,  along with the 
single-mode approximation (2.24). It is seen from the figure that the crossover to the 
large system behaviour described by (2.19) is rather slow. 

Experimental measurements of static Nusselt numbers for 0 < E < 0.08 in cell A 
with L = 4.72, closely agree with the expression (Behringer & Ahlers 1982) 

- 

Mst = 0.840E + 0.64E2. (2.30) 

A fit to the solid curve in figure 1 gives a coefficient of E that is 7 yo larger. The coefficient 
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of C2 differs by 30 yo, but it is not well characterized by either experiment or theory, 
since it depends sensitively on the linear coefficient, and the range of the fit. Notice that 
contrary to the suggestion of Behringer & Ahlers ( 1  977) the initial slope N / ( e  - E,) is 
predicted to  be independent of aspect ratio (and equal to 0.609-l) provided it is 
measured sufficiently close to onset, i.e. for E < e,. I n  large systems, only measurements 
a t  very small Z will give this initial slope. 

2.4. Forcing term: eflect of imperfections and jluctuations 

The preceding discussion of the amplitude equation with boundary conditions repre- 
sents an exact rewriting of the hydrodynamic equations, for the case of slow variations 
in space and time, with R near R,. We wish to apply the equation to a situation in which 
the temperature of the bottom plate is time dependent, which implies that the Rayleigh 
number R will vary in time. It is clear, however, that if the effect of external heating 
is modelled solely by a time-dependent R, then the amplitude equation (2.5), being 
homogeneous in $, will never show a transition from a non-convecting state ($ = 0 )  to  
a convecting one ($ =l= 0). I n  order to treat this transition we will depart from the point 
of view based on a strict expansion of the hydrodynamic equations, and introduce a 
phenomenological term in the amplitude equation, modifying (2.5) to read 

(2.31) 

The form off is not known a priori, and we shall use it as a phenomenological 
parameter to fit the measurements on the response of the system to time-dependent 
heating. A number of physical mechanisms may be identified, which can be modelled a t  
least approximately by such an inhomogeneous term. The simplest, perhaps, is a static 
imperfection in the cell geometry, which prevents the system from undergoing a true 
bifurcation in its time-independent solution (Kelly & Pal 1976; Daniels 1977; Hall & 
Walton 1977). The ‘imperfect’ boundary condition (2.15) is an example of such an  
effect. Another mechanism which can produce a forcing term in (2.31) is the lateral 
heat flow induced by the time dependence of the heating (see appendix C). I n  general, 
we may cite the effect of the fast hydrodynamic modes which have been projected out 
in deriving the homogeneous equation (see appendix A). When the system is heated 
a t  a finite rate i t  is expected that these modes will couple to the order parameter 9 in 
some complicated way, which we shall model viaf. Finally, fluctuation effects can be 
included approximately in (2.31), either by choosing random initial conditions (Newell, 
Lange & Aucoin 1970) or if we consider f to be a stochastic variable with a specified 
probability distribution. The most basic such effect is the Langevin force arising from 
molecular thermal fluctuations, which can be represented by a Gaussian white noise 
source with correlations 

2 

70 
( f ( r , t ) f ( r ’ , t ’ ) )  = -F8( t - t ’ )d ( r - r ’ ) ,  (2.32) 

(Zaitsev & Shliomis 1970; Graham 1974; Swift & Hohenberg 1977). The magnitude of 
F for thermal noise is obtained in appendix D for the case of free-free boundary 
conditions. Its value is 

(2.33) 
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Inserting typical experimental values for He at low temperatures, we obtain the value 

(2.34) 

which is of course very small, since it represents the effect of molecular noise on a 
macroscopic phenomenon. The above estimate is based on a calculation of thermal 
fluctuations in equilibrium, assuming that the macroscopic motion in the cell does not 
react back on the molecular noise. It is conceivable, however, that nonlinear inter- 
actions among the hydrodynamic modes could serve to enhance the thermal noise 
compared with its equilibrium value, although this appears to us unlikely to occur 
near Re. With this possibility in mind, however, and also with the aim of modelling 
extrinsic sources of noise coming from the apparatus, we shall analyse a stochastic 
system given by (2.31) and (2.32), with F treated as an adjustable parameter. 

It should be noted that the necessity for a deviation from the conducting state before 
the convecting solution can grow, is not connected with the gradient expansion used 
to obtain (2.5). Indeed, the full Boussinesq equations [equations (A 1)-(A 4) of 
appendix A] also require nonzero initial disturbances in order to describe the convective 
onset (Davis 1971). The quantity f in (2.31) is merely a convenient parametrization 
of this initial disturbance, insofar as it affects the growth of the convective pattern. 
Since this growth is slow [with a rate of O ( s ) ] ,  the amplitude equation provides an 
exact description of the process after the fast transients have decayed to zero. 

3. Time-dependent heating experiments 
The apparatus and experimental procedures used for this work are described in 

detail in a separate paper by Behringer & Ahlers (1982). The fluid was normal (i.e. 
non-superfluid) liquid 4He at a temperature of 2.1841 K a t  saturated vapour pressure. 
It had a Prandtl number (T = 0-78. Near the Rayleigh-BBnard threshold, the system 
can be described well by the Boussinesq equations, with departures from this approxi- 
mation yielding a value of 0.2 for the parameter P defined by Busse ( 1  967 b )  (see also 
Ahlers 1980). 

Measurements were made primarily in cell A ,  with L = 4.72, and to a lesser extent 
in cell B with L = 2.08. The experiments were conducted by applying a computer- 
generated, time-dependent voltage to a heater at  the bottom of the cell while holding 
the temperature T, a t  the top of the cell a t  a constant value. The resulting heat current 
&(t )  (see equation (C 7 )  for the normalization of a) produced a time-dependent tem- 
perature response of the system, and the temperature q(t) at the bottom was measured 
at fixed time intervals by the computer and associated electronic circuitry (Behringer 
& Ahlers 1982). 

Throughout an experimental run, q(t) was measured a t  fixed dimensionless time 
intervals about equal to 0.1. Typically such a run consisted of the following sequence 
of events: 

(i) Q was set to zero for a period of about 1 h (dimensionless time interval d't z 12) to 
establish the absence of all transients and a baseline for the measurement of q. 

(ii) The heat current was discontinuously changed to Q = &, .c Q,, where Qe is the 
value of Q needed to produce R = R, in the steady state. This condition was maintained 
for one to three hours, depending on the size of &, - &,. For small values, long equili- 
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bration times were considered necessary to  permit the system to reach a steady state 
under the influence of a forcing term likef(r,t) in (2.31). 

was changed from Q, to Q, > Qc, either in a step or by means of a linear ramp. 
Explicitly, for the step, 

Q(t )  = Q, for t < to < 0, (3.1a) 

(iii) 

and 

For the ramp, 
&(t) = Q, for t > to. 

Q(t )  = Q, for t < to < 0, 
and 

Q(t) = Qo + ~ ( t  - to)  for t > to, 

(3.lb) 

( 3 . 2 ~ )  

(3.2b) 

where y = dQ/dt is the ramp rate. For the step or the ramp, the time origin is chosen 
when E = 0. 

(iv) Whenever possible, &, was maintained for a time period sufficient to establish 
a steady state. When Q, was too large, a time-independent state of the system did not 
exist (Ahlers & Walden 1980), and this segment of the run was terminated after one 
or two hours. (An example is shown in figure 8 below.) 

(v) Q was changed back to Qo to establish the overall stability of the apparatus for 
the duration of the run. 

(vi) 0 was changed to zero as a further stability check. 
The overall accuracy of the measurements was limited primarily by variations in @ 

due to variations of order W in the background heat input to the system (Behringer 
& Ahlers 19821, and for cell A was slightly better than 0.001 in N o r  g. For cell B, 
the stability was not as high because the smaller cross-sectional area resulted in a 
larger response to variations in Q. For that reason, cell B was used primarily for the 
determination of ton vs. y ,  and detailed studies of JV ( t )  were confined to cell A(L = 4.72). 
All data in figures 2-8 and 11-16 are for cell A.  

4. Analysis of experiments 
4.1. Basic equations 

Since the externally controlled quantity in the experiments is the heat current Q ,  rather 
than the Rayleigh number, it is necessary first to  relate the time dependences of these 
two quantities even in the absence of convection. I n  appendix C it is shown that this 
relation is 

(4.1) 
dE 

Q( t )  - Sc = (1  +A,) e( t )  + ~1 z, Q(t) 

where A, is the contribution to conductance coming from the side walls, and c1 is a 
parameter of order unity. I n  the presence of convection there is an additional heat 
current, which in dimensionless form is just Jv; so that using (2.4), (4.1) becomes 

Q(t) = (1 + h , , ) ~ ( t ) + ~ , ~ + ~  d2rk2(r , t ) .  
dE 'S  

The above equation must be solved in conjunction with the time-dependent amplitude 
equation (2.31) for given Q ( t ) ,  to obtain $(r, t )  and E ( t ) ,  and then the convection heat 
current Jv; via (2.4). 
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FIGURE 2. Corrected heat current as a function of time (in units of d Z / K )  for a step in the heat 
input a t  to = 0 ,  with the parameter values F,, = 0.14 and 8, = 0.049 in equations (4.7) and (4.8). 
As explained in appendix C, the corrected heat current is essentially equal to the convective heat 
current &'-for t > 3, but differs from zero for t < 3, before convection sets in, due to the finite 
response time of the conducting solution. The solid line is a fit to the deterministic one-mode 
equation for rolls, equations (4.3)-(4.6), with the field strength f adjusted. 

4.2. Analysis in terms of a single roll pattern 
Let us assume that the pattern which grows initially is the lowest state, n = 1, of some 
set of modes satisfying the boundary condition (2.14). For the moment we shall not 
specify the particular symmetry of the structure. The amplitude of the mode satisfies 
an equation depending only on time, which is written, according to (2.24), as 

where the value of g depends on the precise form of the mode excited. In the present 
analysis we shall first use the g obtained from independent static measurements of the 
slope of the Nusselt number as a function of Rayleigh number (Behringer & Ahlers 
1982) 

& = M(E) = E/gexp. (4.4) 

In the time-dependent situation E(t) is given in terms of the externally imposed 
Q(t)  by 

with 

We have solved (4.3) and (4.5) numerically for both the jump and the ramp in Q(t) ,  and 
have fitted the ensuing M(t) to the experimental data, using the constant f as an 
adjustable parameter. It may be seen from the form of (4.3) thatfdetermines primarily 
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FIGURE 3. The same plot as in figure 2, for a ramp in the heat input, corresponding to the 
parameter values 8, = 0.051, and to = Co/p in equations (4.9) and (4.10). /3 = 0.01. 

the onset time for convection, whereas the magnitude of JV a t  later times is fixed 
primarily by S, obtained from (4.4). 

Figure 2 shows the measured values of the heat flow in a step experiment [see (3. l)]. 
In  practice, as explained in appendix C, it  is more convenient to consider a ‘ corrected 
heat flow’ both experimentally and theoretically, but the correction is only large at 
early times, before convection sets in. Moreover, the different runs are characterized 
by the reduced Rayleigh numbers E ( t )  rather than the heat input Q ( t )  of (3.1)-(3.2). 
Thus the step experiment has 

and 
Z ( t )  = - E o ,  t < to ,  (4.7) 

E ( t )  = E l ,  t > to, (4.8) 

where (4.8) refers to times such that initial transients have died, but convection has 
not yet set in. The solid line in figure 2 is the fit to (4.4)-(4.6) for a simple roll pattern, 
with the value of the fieldfadjusted. Figure 3 shows the analogous information for a 
ramp in &(t)  [equation (3.2)], which we parametrize in terms of E as 

and 
E ( t )  = - E D ,  t < to,  

E ( t )  = - Eo +P(t  - to) ,  t > to, 

(4.9) 

(4.10) 

where (4.10) again refers to times such that initial transients have died but convection 
has not set in. As shown in (C 12) the ramp rate /3 is related to the ramp in Q ( t )  (equation 
(3.2b)l by p = y(1 +h,)-l. It is clear from figures 2 and 3 that the theory does not 
account quantitatively for the experimental time dependence of JK In  particular, it 
appears that, instead of going directly to its final state, the system first enters an inter- 
mediate state, with a lower value of JK It may be noted, moreover, that the ratio of 
this value of A’- to the stable value is equal to the ratio of static JV values for hexagons 
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Time t 

FIGURE 4. The data of figure 2 are plotted, along with a fit to the deterministic equation for 
hexagons and rolls [equation (4.1 i)], with two field parameters fl and f2 adjusted. The dashed 
line is the pure hexagon solution (1, = j 8 ) .  

and rolls in an infinite system. We have therefore attempted to fit the data by assuming 
that the intermediate state represents a hexagonal pattern,? as described in the next 
section. 

4.3. Analysis in terms of hexagons and rolls 

In  order to approximate the hexagon pattern we shall assume that the initial distur- 
bance consists of three sets of rolls, each one analogous to the set considered in the 
previous section. The different sets are oriented at  an angle of 8n with respect to one 
another. Then, according to the analysis of appendix B, there are coupled amplitude 
equations of the form 

3 

i= l  
" ( t )  = 2 ]Ail? (4.12) 

The relation determining E ( t )  in terms of Q is still (4.5). It may be noted that, if the& are 
all equal, the final state will be a hexagonal pattern with A, = 2, = A3 = 2 and a static 
Nusselt number 

",, = [g(1+4)]-'B. (4.13) 

On the other hand, iff, > f2,f3 then A, and A3 eventually decay to zero and we have 

" roll - - (- 9 )  -1- €9 (4.14) 

as in (4.4). In  order to fit the data in figures 2 and 3 we have used the theoretical value 

t We are indebted to Robert Graham for this remark. 
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FIGURE 5. The data of figure 3 are plotted, along with a fit to equation (4.11), for hexagons 
and rolls. The dashed line is the pure hexagon solution. 16 = 0.01. 
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FIGURE 6. Test of the sensitivity of the fit in figure 4 to changes in the parameters. The time 
scale To has been increased by 7 yo and the hexagon coefficient p of equation (4.1 1) has been 
increased by 6 yo. 

( p  = 0.77) from table 1. We have chosen f2 = f 3  cfl, and have adjusted the two 
parametersfl andf2. The results are presented in figures 4 and 5 ,  and show a marked 
improvement over the previous fits. In  particular, the value of Jf in the intermediate 
state is determined by the parameter p of (4.1 l),  which follows from the assumption of 
hexagons, rather than from the fit. Thus the agreement between experiment and theory 
in the time intervals 10 5 t 5 20 in figure 4 and 10 5 t 5 15 in figure 5 may be 
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0 5 

Time t 

10 

FIGURE 7. The same plot as in figure 3 for a higher ramp rate, 
p = 0.02. The dashed line is the pure roll solution (f2 = 0). 

Time t 
FIGURE 8. The same plot as in figure 3, for a higher ramp rate, p = 0.037. The arrow at t = 10 
denotes the time at which the ramp was shut off. The onset time t ,  is obtained by a linear 
extrapolation of the data t o  zero heat flow. 

considered evidence in favour of the hexagons. Note, however, that the values offl 
andf, are chosen independently for the jump and the ramp. 

Further improvements of the fits can be obtained by small shifts in the other para- 
meters To, p, and 9. For the step data an increase in To by 7 yo and in increase in B, by 
6 yo, yield a fit which is within the scatter of the data, as shown for example in figure 6. 
In addition, there is enough scatter in the static measurements leading to (4.4) at small 
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E, that S must be adjusted by about 5 % from run to run in the step experiments, in 
order to fit the data at long times. (The scatter in the static data is evident in figure 14 
below.) 

We may attempt to infer the form of the final roll pattern from the measured slope 
of N v s . E  in steady state, i.e. from the experimental value, Sexp = 1.19, in (4.4). The 
theoretical estimates in appendix B are 0 = 1.10 for concentric rolls with a node a t  the 
centre, 0 = 1.38 for straight rolls, and S = 2.2 for concentric rolls with finite amplitude 
a t  the centre. A comparison of the slopes favours concentric rolls with a node a t  the 
centre, and the analysis of $2.3 was done for this pattern. Other evidence, however, 
(Stork & Muller 1975; Behringer & Ahlers 1982) suggests a pattern of straight rolls 
for which the estimated slope is in slightly worse agreement with experiment. The 
analysis of $8 4.2 and 4.3 depends on the symmetry of the basic roll pattern primarily 
through the parameter g, which was taken from experiment. Additional small 
corrections due to different threshold values 6, for different patterns do not signifi- 
cantly affect the predicted temporal evolution. 

Comparable fits to the ones shown in figure 4 are obtained for other step values in the 
range 0.04 < C,, < 0.2 and 0.04 c Z1 < 0.07. Ramp experiments with a number of 
different ramp rates were also carried out, as shown in figures 7 and 8. Since rather 
large E are included in these runs it is necessary to include the next-order terms in the 
amplitude equation as displayed in (B 7) in appendix B. Again the coefficient J6 is taken 
from the static experiments as given by (2.30). For the ramp rate = 0.037 in figure 8, 
and higher ones not shown, the theory based on unstable hexagons followed by stable 
rolls did not fit the data beyond the onset of convection. In those cases the system 
reached a value of N which was outside the range of validity of the amplitude equation 
before any convective pattern was established, and it is much more difficult to do a 
quantitative theory. In figure 8 for example, we may note the slow drift of the system 
up to its steady-state value, after the ramp was turned off at  t 10. Such effects were 
also seen at  the higher ramps, and appear to be related to the onset of turbulence, which 
becomes noticeable in steady state around N = 0.3 (Ahlers & Walden 1980). The 
systematics of the onset time as a function of ramp rate, will be discussed further in 
$ 4.6 below. 

4.4. T h e  partial diflerential equation 
It is of interest to consider the amplitude equation without making the single-mode 
approximation which eliminates all spatial diffusion effects. Indeed, it might be 
thought that the deviations from the fit to a roll pattern in figure 2 come from the 
appearance of another time scale, reflecting the diffusion of the initial disturbance from 
the periphery of the cell into the interior. Unfortunately, the full amplitude equation 
(2.13) in two space dimensions and one time dimension is too difficult to treat numeri- 
cally, so we have restricted ourselves to the axially symmetric roll system (2.20). The 
equation determining s ( t )  was approximated by dropping the ds/dt term in (4.2), since 
this term has essentially no effect for t > 3. Instead of a forcing function f in (2.13), the 
process was started by using a boundary condition 

(4.15) 

for all times, and fB was adjusted to fit the data. The boundary condition at  the centre 
was taken as (2.16). The partial differential equation was solved using a method 
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FIGURE 9. Results of numerical integration of the amplitude equation (2.20) for rolls, with 
fixed boundary values A(r = 0) = 0, A(r = L )  = fB, solid line (note the different vertical scales 
on the different curves). The dashed line is the one-mode approximation (4.3)-(4.6) whose heat 
flow is represented in figure 2. (a )  t = 0;  ( b )  t = 1; (c) 1 = 3; ( d )  t = 10. 

developed by Schryer (1977), and the resulting heat current turned out to be indistin- 
guishable from that of the single-mode calculation shown in figure 2 .  In  particular the 
behaviour associated with the propagation of the disturbance into the bulk would not 
show up on the scale of the figure. 

The time evolution of the amplitude is shown in figure 9 and compared with the 
amplitude 

(4.16) 
nr 

A (r ,  t )  = A(t) sin - 
L ’  

obtained from the single-mode approximation. Since the boundary condition (4.15) 
for the partial differential equation is different from (2.21), the shape function differs 
from (4.16) near the edge at all times, but the difference becomes relatively less 
important as the overall amplitudes grow. We conclude from this comparison that the 
single-mode approximation to (2.20) works quite well a t  all times at  which JV differs 
visibly from zero, and the diffusion process cannot be invoked to explain the disagree- 
ment in figure 2 between the data and the theory with a single roll pattern. 

4.5. The stochastic equation 

As discussed in 5 2 (d), we have explored the possibility that the forcing term f might 
be stochastic in origin. Since the solution of a nonlinear stochastic equation is much 
more diffcult than that of a deterministic equation, we have confined our analysis to 
the study of a single mode problem, such as (4.3), with a random external force. In 
order to make contact with experiment we have only considered the intermediate 
(hexagon) state which is excited initially, and have discarded the data involving the 
final (roll) state. We thus wish to fit the time dependence of the heat flow up to t = 12, 
say, in figures 2 and 3, using the stochastic model. Here again, the set of coupled 
equations (4.3)-(4.6) is too difficult to solve, so we have neglected the time derivative 
term in (4.5), which contributes primarily to the heat transport before the onset of 
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FIGURE 10. Integration of stochastic equation analogous to (4.17) for a step in ~ ( t )  at t = 0. The 
dots are the numerical solution of Jhaveri & Homsy (1980), the solid line is the approximation 
(D lo), and the dashed line follows from the decoupling approximation (4.21). 

convection (t < 3 in figure 2). Then the coupled set reduces to the single stochastic 
equation 

with 

g =  g 1+- +(l+h,)-l,  ( 3 
JW) = (IJI", 

( j ( t ) J ( t ' ) )  = Z;i,lP S(t - t ' ) .  

and a white noise spectrum assumed forf(t), 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

The relation between F and the parameter F of (2.32) is discussed in appendix D. 
This nonlinear stochastic equation cannot be solved analytically, and a full numerical 

solution involves considerable computation. Instead, we have generalized a method 
originally due to Suzuki (1978) which yields an approximate analytic solution of the 
equation, as outlined in appendix D. The method interpolates between the linear 
stochastic equation (@ = 0) at early times, and the nonlinear deterministic equation 
(f = 0) at  late times where the noise in negligible. Although this interpolation is carried 
out in an uncontrolled way, we have tested it for the simple case of a step function in 
&(t), against a numerical solution due to Jhaveri & Homsy (1980). The result is shown 

XI F L M  I10 
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FIGURE 11. The same data as in figure 2, along with a fit to the stochastic equation (solid line) for 
hexagons only, with the noise strength P adjusted. The dashed line is the deterministic fit, 
analogous to the dashed line in figure 4. The transients for t < 3 are not included in the theoretical 
curves. 

in figure 10, where it is also compared to a decoupling approximation, obtained by 
setting 

( 1 4 4 )  = ~ ( I A I ~ ) I ~ ,  (4.21) 

and solving the ensuing equation for ( / A  12) numerically. Our approximation is seen to  
yield a result much closer to the correct behaviour than the decoupling approximation. 
For the ramp in &(t )  no numerical solution is available and the accuracy of our approxi- 
mation is not known precisely, though we expect it to be reasonably good, at  least 
when the ramp is not too slow. 

The results of stochastic fits to the data are shown in figures 11 and 12 for the same 
runs as in figures 2 and 3. The fitting parameter is the strength of the external force P ,  
which once again determines the time scale for the onset of convection. The quantity ij, 
(4.18), which determines the saturation value of (Az) a t  long times corresponds to that 
used in the deterministic equation for the intermediate state. It is evident from the solid 
curve in figure 11 that the stochastic model yields a worse fit to the step data than the 
deterministic equation. A different value of the external force would shift the curve 
parallel to the time axis, but would not improve the quality of the fit. For the ramp 
data shown in figure 12, on the other hand, we obtain a fit with rolls or hexagons 
(curves a and b, respectively), which is as good as the deterministic fit in figure 5 .  
[Presumably, putting rolls and hexagons together, as in figure 5 ,  would also work well 
in this case, but the coupled stochastic equations are rather unwieldy, as mentioned 
earlier.] We have tested the stochastic theory on data at  a higher ramp rate [p  = 0.21, 
and find rather good agreement for short times, using the same external force F as in 
figure 12. We conclude from this analysis that the ramp experiments do not distinguish 
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FIGURE 12. The same data as in figure 3, along with a stochastic fit with rolls (curve ( a ) )  and 
hexagons (curve ( b ) ) .  The noise strength P = qqiith is adjusted to the value q = 6 x lo3 for curves 
(a )  and (5). The dashed curves show a hexagon fit with 7 = loa (curve (c)) and p = 1 (curve (d) ) .  
p = 0.01. 

between stochastic and deterministic mechanisms, whereas the step experiments 
distinctly favour a deterministic model. 

Apart from fitting the detailed shape of the M ( t )  curve, it is interesting to  note the 
order of magnitude of the noise required to  obtain the experimental onset time, and to 
compare this noise amplitude with that obtained from microscopic thermal fluctuations 
as given by (2.34). Such a comparison is shown in curves (c)  and ( d )  of figure 12, which 
correspond t o  

P = r]Fth, (4.22) 

with r] = lo2 and 1, respectively, whereas the experimental points are fitted by 
7 = 6 x lo3. (The solid curve in figure 11 also has the value r] = 6 x lo3.) It is 
apparent from curve d of figure 12 that the present experiments could detect the 
effect of the tiny thermal fluctuations (7 = 1 )  in an accessible time, if there were 
no other mechanism, stochastic or deterministic, to  bring about convective onset 
earlier. 

4.6. Discussion of results 
I n  order to gain further insight into the nature of the forcing mechanism, we have 
studied the dependence of the deterministic forcing parameter f on the ramp rate /?, 
over a range of ramp rates. These include values of /? for which the theory is not 
quantitatively valid at  large times (see figure 8)) but the parameter f still determines 
the onset time for convection, and is rather insensitive to the later evolution. The 
results obtained from a deterministic fit are presented in figure 13, and show roughly 
a linear variation of j with 

J = p +pp, (4.23) 
11-2 
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FIGURE 13. The field strength f for the deterministic fit as a function of ramp rate. The error 
bars are estimates of the change in field needed to give a significantly worse fit to the onset. The 
straight line is given by 3 = 1.4 x 10-*p + 7 x 

with a finite intercept at  ,4 = 0. This dependence may be interpreted by identifying 
two different contributions to the force f, one present in the system a t  all times, and 
one associated with the time dependence of the external temperature, or Rayleigh 
number. This interpretation was tested by using (4.23) obtained from the ramp 
experiments, to fit the step data in the following way. The value of the force in (4.3) was 
chosen as 

f ( t )  = $” +J1&/dt, (4.24) 

and (4.3) and (4.5) were then solved self-consistently for step experiments, without 
further adjustments. This choice gave an excellent fit to the onset times for all runs, 
whereas simply usingf = p ,  or some average value independent of step size, did not. 

The part of the forcing which is associated with the time dependence, namely the 
termfl in (4.23), can be roughly estimated from a simple calculation using the linearized 
theory. This estimate is carried out in appendix C, where we find 

$’ = 0.02, (4.25) 

compared with the experimental value in figure 13 of fl = 0.014. The agreement is 
satisfactory in view of the considerable uncertainties in both estimates. 

According to the above picture, if the term fo is present at  all times, it  should also 
affect the static results. We thus have an ‘imperfect bifurcation’ (Kelly & Pal 1976; 
Daniels 1977; Hall & Walton 1977; Matkowsky & Reiss 1977), and there should be 
some rounding in the static Nusselt-number data. The time-independent solution of 
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FIGURE 14. The static data of Behringer & Ahlers (1982) for convectiveheat f l o w x =  ( N -  1) R/Rc 
'us. reduced Rayleigh number 2 = [R-R,(L)]/R,(L), in the immediate vicinity of onset (solid 
points). The solid line is the fluctuation rounded value, equation (D 30), using the noise strength 
P = 6 x 10sPt',, obtained from the onset time. The dash-dotted line is the corresponding deter- 
ministic estimate, equation (4.3), with1 = J o  = 7 x coming from the intercept in figure 13. 
The dashed line is the unrounded (ideal) curve given by JV = 0.84E. 
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FIUURE 15. The onset time (solid points), as a function of initial steady-state Rayleigh number 
E = -2,,, for the ramp rate of figure 7. The solid line is the result of the deterministic theory, 
while the dashed line is the stochastic value, p = 0.02. 

(4.3) withf = f'J is shown in figure 14, along with the static data of Behringer & Ahlers 
(1 982) very near R,. We also show the static rounding predicted by the stochastic 
theory (see appendix D) using the full P = 6 x lo3&, obtained from the dynamic fits. 
It is apparent from the figure that the experimental rounding is consistent with either 
description of the dynamic onset. (Note that the absolute magnitude of the fields 
depends sensitively on the parameter yo, and is thus uncertain by roughly a factor 
of 2). 
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FIQURE 16. The same plot as in figure 15 for a high ramp rate, p = 0.2. 

Another way to represent the dynamic data is to define an ‘onset time’ ton (Foster 
1965a, b ) ,  and to study its variation with the parameters in the system. Among the 
various possible definitions of this time, we have chosen a purely empirical one, namely 
the time obtained by extrapolating the N(t) curve back linearly from its inflection 
point (see figure 8). It is clear that the onset time will depend critically on the initial 
value of A(t), which according to (4.3) depends on the particular Rayleigh number at  
which the system equilibrated before the time dependence set in. Thus, a number of 
runs were made with the same ramp rate, but with initial steady states at  different 
values of the Rayleigh number g = - go,  below the threshold. The corresponding onset 
times are plotted as a function of go for two different ramp rates in figures 15 and 16, 
and compared with the theory. We may first note that both the deterministic and the 
stochastic theory correctly predict that the onset time becomes shorter as B ,  becomes 
smaller, thus confirming the idea that a ‘field’f is present in (2.31)) evenin theabsence 
of any time dependence. Indeed, for a constant B = - Eo < 0, wit8hf=fo = const., we have 

A2 = (p?,/B0)2 (4.26) 

in the deterministic model (4.3) and 

(1212)  = F/Eo (4.27) 

in the stochastic model, both of which increase with decreasing 2,. The theoretical curves 
in figures 15 and 16 were obtained by using 3 = 6 x 1034& in the stochastic case, and 
by choosingf = f” before the ramp is started andf = +,!If once the ramp is on, in the 
deterministic model. The agreement is only semi-quantitative in either case, but it 
does appear to confirm the basic phenomenological assumption contained in (2.31). 

Finally, we also show in figure 17 the onset times as a function of ramp rate for all 
the ramps we considered (choosing values of go large enough so that ton is independent 
of Z,). Experimental points are presented for cells A and B, with aspect ratios L = 4.72 
and L = 2-08) respectively, along with the theoretical predictions from the stochastic 
theory, using a noise value P independent of ramp rate. We may also test the assump- 
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FIGURE 17. The onset time to, w. the ramp rate p on a log-log scale. The solid points are for 
the cell of reduced radius (aspect ratio) L = 4.72 (cell A),  while the open points are for a cell 
with L = 2.08 (cell B). The solid line is the stochastic prediction using P = 6 x iOa&,, for 
L = 4.72, independent of ramp rate, while the dashed line is the corresponding prediction for 
L = 2.08, with Zith multiplied by (4.72/2*08)2 [equation (D 19)]. 

tion that for different aspect ratios the values of F scale as L-2, as predicted in (D 19).  
Although the experiments extend to ramp rates which immediately carry the system 
beyond the range of strict validity of the theory, the general consistency of the data 
with our simple model is reassuring. A similar plot for the deterministic theory with 
a constant fieldfwould give analogous results, since the log-log scale does not resolve 
the small differences implied by the ,8 dependence off shown in figure 13. 

In figure 18 the same experimental results are presented, along with those of Foster 
(19656) ,  at ramp rates several orders of magnitude higher than the present ones. The 
onset time is roughly proportional to p-4 for our data, as one would expect from the 
linearized amplitude equation 

B(t) - B,exp (+,8P) B,exp ( t / t o n ) 2 .  (4 .28)  

For the higher ramp rates used by Foster, the dependence seems closer to b-3, as one 
would expect if the onset time in dimensional units were independent of the height d 
(Foster 1 9 6 5 ~ ) .  

The authors are indebted to N. Schryer for making his partial differential equation 
program available to them, and for advice on its use. They also wish to thank R. P. 
Behringer for useful discussion and to acknowledge his contributions to the early stages 
of the experiment. The research of GA done at UCSB was supported by NSF grant 
no. DMR 7923289. 
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FIGURE 18. The onset time v8. p on a larger scale than in figure 17. The solid points are the same 
as in figure 17, and the open points are taken from the data of Foster (1965a) at higher ramp 
rates. The solid line has slope - 4, while the dashed line has slope - Q. 

Appendix A. Summary of amplitude equation 
The hydrodynamic equations of motion for the velocit,y field (u, w, w) = (u, w) and 

the deviation 6 of the temperature from the linear conduction profile between 
boundaries at x = 0 and 1 are the Oberbeck-Boussinesq equations 

u=cr  v2+- u-  w-+u.v u-VP, 

zic=ae+a v2+- w -  W - - + U . V  w-- 

0 = R ~ +  v2+- e- W-+U.V e, 

[ 3 [ a”, ] 
i3P [ i$] [ aaz ] a x ,  

[ :;z] [ :x 1 
aw v .u+-  = 0, 
az 

where distance, time and temperature are scaled by d, d 2 / K ,  and ~ v / a g d ~ ,  respectively, 
the Prandtl number is 

= V / K ,  (A 5) 

(A6) 

and the Rayleigh number is 

(!c - TU) gad3 R =  
KV 
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The gradient V refers to the two-dimensional horizontal co-ordinate r. We introduce 
the four-component vector 

and expand this vector in the complete set of eigenfunctions of the system obtained by 
linearizing equations (A 1)-(A 4) (Cross 1980): 

The essential approximation involved in the derivation of the amplitude equation is 
a truncation of the expansion (A 8) to retain only the lowest mode (i = 1 )  and to limit 
the horizontal wavevectors q to the vicinity of the circle 141 = qo, where qois the critical 
wavevector for convective onset. Thus equation (A 8) becomes 

V(r ,  z, t) = Vt)( t )  ef)(r, z) .  
IPl”Q0 

The critical eigenvector e(1) is written in the form 

C 

where the functions uo(x) = iqfi,(z), wo(z),  Oo(z) are the eigenfunctions in the vertical 
direction, which are equal to 

u,,(z) = 4i cos m, wo(z) = Z J Z  sin nz, O0(z) = 942 nzsin nz, (A111 

for free boundary conditions. The corresponding expressions for rigid boundary 
conditions are written down in the appendix of Cross (1980); note, however, that the 
upper and lower plates are at z = k in that work. The quantity VF)(t) is proportional 
to the Fourier coefficient of the order parameter 

(A 12) 

(A 13a) 

(A 136) 

are determined by the normalization condition (2.4) [the symbol ( ), here means an 
average over the vertical direction]. The r-dependent order parameter is given by 

and is a real function, since $, = $5,. The physical variables are 

(A 15) 

The amplitude equation (2.5) follows from inserting (A 9) into the hydrodynamic 
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equations (A 1)-(A 4); the resulting 'free energy' F is most conveniently written in the 
q-representation 

F = BE [ -E+E3q- -0 )21  I@*12+t-a c 9 ( B 1 B 2 ) 1 C h * l ~ ~ @ q 3 ~ q * ~ ( q l + q 2 - q 3 - q 4 ) .  (A161 
a (11. (12 

(13, (14 

Since the terms quadratic in $q restrict q values to the region 1 q 1 = qo, the nonlinear 
coupling g need be calculated only for all lqil x qo. Then g is found to be a function of 
only the angle between q, and q2, which from simple geometrical considerations is the 
same as the angle between q3 and q4, for q1 + q2 = q3 + q4 and lqil = qo. The parameters 
T ~ ,  R,", to [see ( 2 4 1  can be calculated explicitly and depend on the boundary conditions 
on the upper and lower plates. Their values are listed in table 1.  The coefficient g(x) is 
a rather complicated Prandtl-number-dependent function which we do not display 
here, but refer the reader to Cross (1980). 

Given a specific convection pattern (say rolls in the x-direction), we may write the 
order parameter in terms of the rapidly oscillating term eiqox, and a slowly varying 
complex envelope, 

where the slow variation of A follows from the restriction lql x qo in (A 9). Inserting 
equations (A 10)-(A 11) into (A 9) we obtain, for instance, the representation of the 
hydrodynamic variables listed in (2.7) of Newell & Whitehead (1969). 

The amplitude equation is given by (2.7) of the text with the coefficient of the non- 
linear coupling 

The values of this expression for rigid-rigid and free-free boundaries are given in table 1. 
When the convection pattern is composed of N sets of rolls with specified directions 

6,. one makes the substitution 

$(r, t )  = 4 2  Re [A(r, t )  eiqo2], (A 17) 

g =  4 g ( + 1 ) + g ( - l ) .  (A 18) 

$ ( T ,  t )  = 42Re A&, t )  eiqi.' , (A 19) " i=l 1 
with lqil = qo. The form of the amplitude equation derived is (2.11) in the text. Of 
particular interest for our purposes is a hexagonal pattern composed of three q,, 
mutually at  an angle  IT. The nonlinear coupling coefficients g,, are of two types: 

diagonal, g,, = $g( + 1) +g( - I), (A201 

(A211 

equal to the g defined above; and 

off diagonal, g12 = g( - 1)  +g( + 4) +g( - 4). 
Following notation introduced by Newell &Whitehead (1969), we define g,, = gll( 1 + p )  
so that 

This quantity is also explicitly displayed in table 1. It may be noted that, once the 
form of the amplitude equation is accepted, the coefficients p and g can be calculated 
from results of Schliiter et al. (1965) (rigid-rigid) and Pellew & Southwell (1940) 
(free-free) . 
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Appendix B. Removal of spatial dependence 
A single roll pattern 

Close enough to onset the shape of the convection pattern is given by the eigenfunction 
of the linearized differential equation at onset. The linear growth rate is the eigenvalue, 
and the saturation strength is determined by a suitable integral over the nonlinear 
terms. This, schematically, is how the spatial dependence is removed. The method is 
best demonstrated by taking a particular example : the cylindrically symmetric state 
described by (2.20). 

The normalized eigenvectors of the linearized form of (2.20), satisfying the boundary 
conditions, are 

9, = sin (nnr/L), (B 1) 

and the scalar product is defined by 

( f I ( ~ ) d Z ( ~ ) )  = ;j; ~ r j 1 W 2 ( r ) .  

The amplitude is expanded as 
ca 

A m  = c. A n A ,  

Jv = 2 IAn)2. 

n=l 
and the convective heat is simply 

n 

Equation (B 3) is substituted into the differential equation (2 .20)  and separate 
equations are derived using the orthogonality of the eigenfunctions, 

(B 5 )  
dA  
dt 

7 n -  - (e-n2ec) An - (9n, (gL/r)  9i 9j 9 k )  Ai A,’,, 

where ec = nZ&lL2. This is, in principle, a complete solution of the problem for arbitrary 
e < 1.  However for (e - 8,) < e,, only A, is large (of order (e - ec)&) with other coefficients 
An, n + 1, smaller by factors of order (e-ec) /ec .  (Actually, taking into account the 
strength of the couplings, the expansion parameter is more like (e-ec)/iOec.) Then 
the time-dependent JV is given, in fact correct to order (e - eJ2, in terms of the single 
mode of strength A, = 2: 

N =  B ~ [ l + O ( ( E - € , ) 2 ) ] ,  (B 6) 

where A evolves according to the equation 

- 
(B 7)  

(B 8) 

d B  
~IJZ = [ (e--c)-8.$ IA12+g6 IA14]x, 

with 

g4/9 = (91, (L/r)  $3 = 1.6595, 

and 

The terms in ]A142 in (B 7 )  come from the lowest-order coupling to higher-n modes, 
with the amplitude A ,  of these modes calculated to lowest-order as adiabatically 
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following 2. This is satisfactory only up to this order, and only then can a single-mode 
description be used. To go to higher orders it is necessary to solve the full system (B 5).  
From (B 7), neglecting &,, one immediately obtains (2.24) of the text. 

In  deriving (B7) we assumed that the amplitudes A ,  of the modes r$n could be 
complex numbers since such functions satisfy the boundary conditions (2.21). In fact 
a more careful analysis shows that the phase is not a free variable, but is fixed by the 
requirement of finite fluid velocities a t  the singular point a t  the centre of the cylinder. 
This can be seen by comparing the fluid velocities given by the amplitude equation 
with the velocities in the modes of the linearized hydrodynamic equations (Brown & 
Stewartson 1978). I n  the cylindrical geometry we may put the phase factor in the 
definition of$,, and assume A to be real. I n  a rectangular geometry on the other hand, 
with boundary conditions given by (2.14), a similar analysis would lead to an equation 
analogous to (B 7), but in this case the full complex equation would have to be used. 
The phase of A then gives the relative magnitude of the even and odd hydrodynamic 
modes which go unstable at e = E,+O(L-~)  (Daniels 1977). The question of whether 
the amplitude is complex or real is important in our work only in the effect of a 
stochastic field on the system, treated in appendix D. 

Hexagonal pattern 

One would like to repeat the procedure for other convection patterns within the 
cylindrical cell. Unfortunately, without the simplification of cylindrical symmetry, 
analytic solution even for the linear eigenfunctions seems impossible in finite geometry, 
and we have resorted to much cruder approximate methods. 

Returning to the 'free energy' functional P (equation (2.2)), we suppose a solution 
of the form 

@ = h(r)a(r ) ,  (B 10) 

where h(r) is a real function assumed cylindrically symmetric, which describes the slow 
modulation of the amplitude of the convection pattern, forced by the zero boundary 
condition a t  the walls; the function a ( r )  gives the rapid local variation, i.e. the local 
nature of the convection, analogous to the factor eiq.' in (2.9).  The amplitude of a(r)  
is assumed constant over large distances, although it may be necessary to include 
slowly varying rotations of a basic pattern to conform in some way to the cylindrical 
boundaries. Equation (B 10) can be looked upon as a variational trial function with 
parameters to be determined by minimizing the function P. 

To describe approximately a pattern of hexagonal cells related to a final cylindrically 
symmetric roll pattern we have taken 

1 nr 
h(r) = - sin -, 

r t  L 

a(r) N 2, + A, eiqa.r + jj 3 eip3.r 7 Is21 = Is31 = !lo, (B 12) 

where the first term describes a concentric roll pattern, and the next two terms 
represent rolls locally a t  an angle f.r to the cylindrical rolls. The amplitudes JB,I, lAzl 
/x31 are assumed spatially constant. Clearly the directions of q, and q2 must vary 
slowly, in a way which we have not determined, even schematically. However equations 
(B 1 1)-(B 12) should provide a reasonable first approximation for an array of hexagonal 
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cells distorted to accommodate the cylindrical geometry, a t  least not too close to the 
centre. Such an ansatz leads to an expression for of the form 

gcc ( E - 4 )  ( ] q 2 +  p z y +  /A31z) -&[IAJ4+]Az]4+ ]A314 

+2P(IA1l2 I - 4 2 I 2 +  JA2I2 IA3l2+ I 4 I 2  1-411”1, (B13) 

where el. is assumed to  be roughly the same for all A’s, and is of order ec; it arises from 
the spatial derivatives which depend on the detailed form of a(r). The overall coeflcient 
of the nonlinear terms is just determined by h(r) ,  and is the Lj4 calculated above. The 
relative strength of the coupling between rolls is determined only by the local structure 
and it is the p calculated for infinite geometry, (A 22). Thus minimizing @ with the 
ansatz, (B 11)-(B 12) leads to the result that for different local patterns (hexagons, 
squares, rolls, etc.) all slopes N / ( E - c ; )  in finite geometry are reduced by the same 
factor g4/g from the laterally infinite values. Moreover, for given geometry, ratios of 
slopes between different patterns are independent of the geometry. Having found the 
functional $, we can insert it into (2.1) to find the equation of motion (4.11), used to 
fit the heating experiments. Note that, in principle, for the hexagonal pattern the 
expression for @ in (B 13) can contain additional terms proportional to Re (A1A2A,), 
but their coefficient vanishes for the Boussinesq equations with time-independent 
driving. Since the coefficients coming from the non-Boussinesq corrections (Q = - 0.2, 
Busse 1967a,b; Walden & Ahlers 1981) and from the rate of variation of B (Krish- 
namurti 1 9 6 8 ~ )  are both very small, these lead to  no appreciable effect on the predicted 
time evolution of the amplitude in the present experiments. 

Non-cylindrically symmetric roll pattern 

Finally, we have also analysed a linear roll pattern that breaks the cylindrical 
symmetry. The centre is no longer a special point, and the amplitude would not be 
expected to be small there. Therefore we have taken 

(B 14) 
n-r 

h(r)  = cos -. a(r) = A eigoz ,  z = r cos 8. 
2L’ 

Ignoring derivative terms a2/ay2 in (2.20), which lead to terms of higher order in 
(co/L)2, we find 

JV = (1*38)-l ( E - E J ,  (B 15) 

Ec = 1 * 1 8 ~ ~ ~ ~ / 4 L ~ .  (B 16) 

This yields an onset point below that of cylindrical rolls with a node a t  the centre, 
cc = (n2[g/L2). I n  fact we can show that the ansatz (B 14) gives a value of 0 lower than 
do cylindrical rolls for all E < 38n2[$/4L2. This implies that the cylindrical rolls are 
(globally) unstable to a pattern like linear rolls, for a rather wide range of B near onset. 
A hexagonal pattern based on straight rolls as in (B 14) will also lead to an expression 
of the form (B 13). 

Cylindrical rolls with Jinite amplitude at the centre 

For finite cylinder radius the zero boundary condition a t  the centre (2.16) is no 
longer strictly valid, and the possibility exists of a non-zero amplitude a t  this point. 
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Such a state has h = cos (n-r/2L)/r3, a = A eiqor, and a threshold which is again lower 
than for the state with a node at the centre 

(eC2 = n2[i/4L2 rather than cc = cccl = n2[i/L2). 

The slope of N v s .  E as calculated by Brown & Stewartson (1979) for free-free boundary 
conditions in the limit L -+ co, is equal to (g4)-1 = (2glnL)-l = 0.46, for our cell. The 
finite-amplitude state in the rigid-rigid case was found numerically by Charlson & 
Sani (1975), who obtained a slope (g4)-l = 0-47 for L = 2.25 and cr = 1.  From the 
limited information available, it  is difficult to rule out the finite-amplitude state 
conclusively, but it appears to us unlikely that this is the state observed in either the 
static, or the time-dependent heating experiments. 

Appendix C. Derivation of heating equation 
Since the heating is time dependent, the conducting temperature Tcond is not simply 

a linear function of the height in the cell, even in the absence of convection. This leads 
to three effects of interest. 

(i) The heat conducted from the lower plate is no longer simply proportional to R, 
so that in the heat balance equation, 

heat applied to 
lower plate ) = (plate (no convection) ) + (convection 

heat conducted from lower extra heat due to 

there are corrections in the first term on the right-hand side. 
(ii) The ‘effective Rayleigh number ’ driving convection is not R cc q - T,. Instead, 

a weighted average of Tcond (with the weighting given by the shape function w&) B,,(z) 
of appendix A) must be used. It turns out that these corrections are small, and will be 
neglected. 

(iii) In general the conducting profile will have radial derivatives. The hydro- 
dynamic equations are now incompatible with zero fluid velocities. Thus time- 
dependent heating acts as a field driving the convection. 

To calculate these effects we write an equation for 8,(z,r), the deviation of the 
conducting-temperature profile from the linear interpolation between the instan- 
taneous temperatures T, of the top and q(t) of the bottom plates, 

where 8, is calculated in the absence of convection, and so satisfies the equation 

where the dimensionless quantities of appendix A are used. Since for E < 1 convection 
gives a small perturbation to the total heat flow, the solution for 8, may continue to 
be be used above onset. Equation (C 3) is readily solved in an approximation in which 
13, follows the driving term adiabatically, i.e. aB,/at is neglected. It can be shown that 
this corresponds to the first term in an expansion in r2 M 0.002 for typical ramp 
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rates used. Assuming good conductors for the lateral boundaries (i.e. 0, = 0 for r = L)  
this gives 

where Po, is defined by Jo(7.rP,,) = 0. 
The heat conducted from the bottom plate is proportional to -(aTcond/a~)ll=O 

averaged over the plate. Evaluating the contribution due to 8, from (C 4) numerically 
for L = 4.7 gives for this average 

The heat conducted from the bottom plate through the liquid is thus equal to 

Qliquid = 1 + E + 0.30 dE/dt, (C 6) 

where we have normalized by the corresponding value for a static temperature 
difference a t  E = 0. In  addition there is a contribution from conduction through the 
cell walls, to give for the total heat conducted from the lower plate 

Q = ( I  +A,) ( 1  + E )  + 0*30dE/dt. (C 7)  

with A, = 2 ( i / L )  (K,/K,) = 0.14 in the present experiments for cell A ,  where i is the 
thickness of the wall and K,/K, the ratio of the thermal conductivities of the wall and 
liquid. Finally it is convenient to subtract from its values Qc, for E = 0 and dE/dt = 0,  
to give a quantity we call the heat flow Q: 

Q &-&, = (1+hw)E+O*3OdB/dt. (C 8) 

The numerical coefficient in front of dE/dt depends on the assumption of perfectly 
conducting walls-insulating walls would instead give a coefficient $( 1 +A,). I n  
addition any thermal mass attached to the lower plate would act to  increase this 
coefficient. [In practice we believe there is a correction from this effect.] Thus the 
coefficient is best evaluated from experiment, for example from the change in E when 
the ramp is turned on, well below onset; the value obtained in our cell was 0-5. I n  
equations (4.1)-(4.2) we have denoted this coefficient by cl. 

Above onset there is an additional contribution to the heat flow from convection. 
By our choice of normalization this is simply A”, so that above onset we have 

The experimentally accessible quantities are Q(t)  and E ( t ) .  The interesting quantity 
theoretically is N(t). To compare theory with experiment we wish to plot a quantity 
which is directly measured, but displays the behaviour of M. The convenient choice, 
which we call the ‘ corrected heat flow ’, is slightly different for the steps and ramps. 
For the steps it is 

(C 10) 
dE 

correctedheatflow = Q - ( l + A , ) Z = M + c , - .  
dt 

Notice that this quantity reduces to JV when dC/dt = 0,  but it will have large corrections 
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at small times, just after the step is applied. For the ramps we make an additional 
subtraction, so that the quantity plotted passes through zero when JV is zero, i.e. 
we write: 

corrected heat flow = Q - (1 +A,) E - clP = N+ c (C 11)  

where P is the ramp rate. In  either case we have two expressions for the corrected heat 
flow, one involving purely experimental quantities, the other to be calculated from 
theory. These are the quantities plotted in the figures. 

Finally we should point out here that experimentally the steps and ramps are 
applied to the heat input to the lower plate, equal to Q. After initial transients have 
died out, but before convection begins, P will correspondingly have been stepped, or 
will be following a ramp. Since it is Z 4 0 that drives convection, we have quoted the 
steps and ramps in E ,  rather than those in Q, in describing the fits to experiment. As 
seen from (C 9), the changes in B are related to corresponding changes in Q by the factor 
( 1  + A,), e.g. for the ramp rate we quote P given by 

P = Y / ( i + h w ) ,  (C 12) 

where y is the applied heat ramp dQ/dt ,  (3.2b). 

isolate the radial dependence in the equation for the velocity w [equation (A 2)], i.e. 
In order to estimate the strength of the driving term mentioned in (iii) above, we 

(C 13) 

where Tcond(r, z )  is the conducting profile. We wish to project this equation onto the 
order parameter $(r) ,  i.e. on the lowest eigenvector e(l), equation (A 9). Let us write 

E: = / d z j d z r [ a  I B Q 1 2 + ~ c ( l u , ) 2 +  1 ~ ~ 1 2 ) ~ .  (C 16) 

(Note that the contribution from the pressure term in (A 2) drops out in forming the 
scalar product). According to Schluter et al. (1965) we may write 

wX = e--iQ.rq2fq(z), (C 17)  

+-( Q c / c ~ )  - J ’dzJ’d2r~~cfq(z)  [V?Fcond(r ,z )~  e--iq.r, (C 18)  

f(‘) ( C R C / E Q ) f Q ( z )  (C 19) 

(C 20) 

with f,(z) -+ const. as q -+ 0, so we may integrate by parts in (C 15) to obtain 

where c is defined in (A 13b). For the case of free-free boundary conditions 

is independent of q;  if we assume the same for the rigid-rigid case we find 

= - c/dzf(z) V:Fcond(Z, r ) .  

For a cylindrical system, we wish to project equation (C 20) along the n = 1 mode 
of the amplitude expansion (B 3). Using the expressions (C 3)-(C 4) for Tcond, a rough 
estimate of the integrals leads to 

as quoted in (4.25). 

. 
B = 0*02dE/dt, 
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Appendix D. Stochastic equation 
Let us consider the nonlinear stochastic equation 

A = 7&(t)-gA2]A(t)+f( t ) ,  (D 1) 

where the force f is a Gaussian random variable with mean zero and a white-noise 
spectrum 

( f ( t ) f ( t ’ ) )  = 27G1Fd(t - t ’ ) ,  (D 2 )  

and for simplicity the variable A( t )  is taken to be real. We wish to calculate (A2(t)) 
for a specified form of ~ ( t ) ,  in the limit of weak noise, [P- t  01, when the system starts 
near an unstable position A = 0. This problem has recently been considered by Suzuki 
(1978), Haake (1978) and de Pasquale & Tombesi (1979), for a time independent ~ ( t ) ,  
with some specified initial probability distribution, e.g. P ( A ,  0)  = 6 ( A ) .  We wish 
to generalize this treatment to an arbitrary time-dependent e( t ) .  To do this we write 
down the solution of the deterministic equation (f = 0 ) ,  with initial value A ,  at t = 0, 

where 

Equation (D 3) may be used in the stochastic case (f =k 0 )  to dejne the variable A,(t), 
which satisfies the stochastic equation 

A, = f ( t )  R;l(t) [1 + A @ )  R,(t)lQ, (D 6) 

with no drift, but a more complicated noise. We now make the approximation, valid 
at  short times, of linearizing (D6), which turns A, into a Gaussian variable with 
probability distribution 

P,(A,, t )  = [ 2 m d z ( t ) ] - h  exp [ - A:/2Az(t)], (D 7) 

The corresponding expression for A( t )  is obtained by using (D 3) and (D 7),  from which 
we find 

At large times it may be verified that 7( t )  -+ 00, so ( A 2 )  = A:, which is the large time 
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behaviour of the deterministic solution (D 3). Thus our approximation (D 10) inter- 
polates between the correct behaviour a t  short and long times. For a constant e(t),  the 
approximation essentially agrees with those of Suzuki (1978), Haake (1978), and de 
Pasquale & Tombesi (1979), and also with the numerical solution by Jhaveri & Homsy 
(1980) mentioned in the text (figure 10). 

In  applying the above method to a solution of (D 1), we shall use a function s(t) 
which is a constant - eo for t < 0, and a t  t = 0 either jumps to a finite positive value sl, 
or has a linear dependence on time. The distribution of A2 a t  t = 0- is a Gaussian with 
variance A:, and it can be calculated by linearizing (D l),  since there is no instability 
as long as s(t) < 0. The value obtained is 

(A') = A: = F/eo. (D 13) 

Equations (D 10)-(D 13) provide a complete (approximate) solution of the stochastic 
equation (D 1). 

Let us now turn to an estimate of the noise parameter F = -Fth in (2.33), arising from 
thermal fluctuations on a molecular level. Correlation functions of hydrodynamic 
variables below the Rayleigh-BBnard threshold ( E  = - e0), have been estimated on 
the basis of the linear theory, by Zaitsev & Shliomis (1970), Graham (1974) and Swift & 
Hohenberg (1977). The results are 

z u ( q i ) )  = (w2 aq + 9') xBw[e0 + m2 - 4:)2/4m-11 

7 = 3/3c,/Tpgacr $ 1, (D 15) 

where c, is the constant-volume specific heat (per unit volume). The relation between 
$Q and the (dimensionless) hydrodynamic variables implies 

<$q$q9 = <w(q) m')) [dlK(T,-  3 3 1 .  (D 16) 

On the other hand, the ($3) correlation function below threshold can be simply 
calculated from the linearized form of (2.31), 

<$q$qh.) = ( w 2 m  + w  ~ [ ~ ~ + ~ ~ 0 2 ( 4 ~ - - ~ ) 2 / 4 q b i - ~ .  (D 17)  

Comparison of (D 16) and (D 17) yields 

where we have neglected the Ycr term in the last bracket of (D 14). Note that although 
the calculations were carried out consistently for free-free boundary conditions, we 
shall apply the final formula to the rigid-rigid case. 

I n  order to estimate the thermal noise field appropriate to the single-mode equation 
(4.17) we must project (2.31) onto the lowest mode of (2.22). It turns out that this 
merely introduces a factor of the horizontal area of the cell into the noise source, i.e. F 
in (3.32) and F in (4.20) are related by 

= PIS = F/nL2, (D 19) 

Fth = qh/nL2. (D 20) 
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The static value of the Nusselt number, on the other hand, is related to the local 
average 

which involves the higher q modes of (2.22) as well. The calculation of such static 
averages using the nonlinear equation in two dimensions cannot be carried out 
exactly, even in the infinite system, but a reasonable self-consistent estimate can be 
obtained in that case. As discussed, for example, in $VI (a )  of Graham (1974), ($.") 
below threshold (e = - e0 < 0 )  is given by the solution to the self-consistent equation 

For e = eo > 0, a reasonable approximation is 

where <J2)  satisfies (D 22) with (D 24) replaced by 

E = 2S0 -k 3g ($'). 
For e0 = 0 we obtain 

<$9 = [Fqo/243tog~I** 

In  applying these formulae to the finite system we shall replace e by E ,  so (D 24) becomes 

E = -E+3g(@2), B < 0, 

E > 0. 
and (D 26) becomes 

2. = 2E+3g(g2), 

I n  addition, the value of (+2) above onset in the absence of fluctuations is E/g in the 
finite system so we replace (D 25) by 

(1/r2> = S/8 + <J", (D 30) 

but retain g in the fluctuation formulae (D 28)-(D 29). Using the enhancement factor 
7 obtained from the dynamic data, we obtain F = 6 x IO3qh = 2.16 x 10-5. Thus we 
estimate the fluctuations at onset ( E  = 0)  from (D 27) as 

($2) = 1-53 x 10-3, E = 0. (D 31) 

The values of (@2) as a function of E obtained from (D 30) are plotted in figure 14, and 
agree with the data within the experimental scatter, though the large tail at negative E 
seems somewhat suspect. 
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